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QCD from Chippewa Falls 

Philippe de Forcrand I 

Recent and new results on SU(3) lattice gauge simulations are presented. They 
cover the study of finite-size effects for the mass gap and the string tension, the 
measurement of the central and spin-dependent potentials on large lattices, and 
the inclusion of dynamical fermions in the simulation. 

I have been working at Cray Research now for over 6 months, and I would 
like to present a summary of my research there. At this conference, Steve 
Chen gave a general presentation of the Cray machines, and of their perfor- 
mance on a wide range of applications. <~) So I can focus here on QCD 
applications. The goal of my research at Cray, as I see it, is two-fold: I 
would like those of you who are still computing on "small" machines to 
become convinced of the benefits and quasi-necessity to gain access to a 
supercomputer--that 's  an easy task. I also wish to make the lucky few who 
already use a Cray aware of the true computing power of such machines, 
by showing practical examples. Therefore I will successively review 
numerical results obtained recently in Chippewa Falls on finite-size effects 
in pure gauge QCD, on the central quark-antiquark potential, on spin- 
dependent potentials, and on the simulation of dynamical fermions. 

1. FINITE-SIZE EFFECTS IN PURE G A U G E  QCD 

Suppose one wants to measure the mass gap m e of pure gauge QCD. 
One widely used method consists in forming an operator (9, which has 
some overlap with the physical state under investigation (called glueball 
here), and to measure the connected correlation of this observable as a 
function of euclidean time t. For  large t, the higher excited states generated 
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by the application of C on the QCD vacuum will have exponentially died 
off, and one will have 

C(t )=(C( to ) (9 ( to+t ) ) - (C( to ) ) ( (9 ( to+t ) )  ~ e -mgt (1) 

where C(t) is evaluated by Monte  Carlo on a lattice of, say, N 3 x N, sites 
and mg is the energy of a glueball at rest. (9 should therefore be a 0-momen- 
tum, translation-invariant operator of the form 

1 
(9(t) = N--Ts ~. og(Y, t) (2) 

where the normalization factor ensures that ((9) is independent of the 
spatial extent Ns of the lattice. Assume Ns can be chosen arbitrarily. The 
fluctuations of a single measurement of (9(t) around ((9) vary like N s  3/2. 

Thus a measurement of ((9(to) C(to+t))  will yield a connected part of 
order N s3/2 on top of the disconnected part (C)2  that must be subtracted. 
However, ((9) is itself known with an error of order Ns  3/2, so that after a 
given number of measurements of 0(t), the signal-to-noise ratio for C(t) is 
independent of Ns. Since the computer time to take measurements grows 
like N 3 it is clearly advantageous to work on long, spatially thin lattices. 
This strategy, adopted in the early efforts at calculating the glueball 
spectrum, (2~ can be marred by finite-size effects. 

An alternative approach consists in perturbing the vacuum at time t 
by putting a source having an overlap with the desired glueball. Without 
the source, one would have 

/41Oo> =E01Oo> (3) 

where H is the QCD Hamiltonian and E0 the ground-state energy. With 
the source 

HIQ'> = ~ ~,E, tQ,> (4) 
i = 0  

The expectation value of observable (9 a distance t from the source is then 

((2ol e - m C e - m  [Qo) _ ~ = o  Y~=0 ~,*~je-(E'+ L))'(g2il 0 1s ((9(t)>-- 
(t'201 e 2Ht ]~-20 ) ~,iOO=o l~il2e-2ei, 

= ((2ol (g lt2o) + g R e ( ~  (t-2o, C lf2e))e-~e,-eo" + ... 
(s) 
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The leading term in (5) is the unperturbed vacuum expectation value <(9 >. 
The relaxation of <(9(0)  toward <(9> is exponential, and the exponent 
( E l -  Eo) is the desired mass gap. 

In this approach only expectation values are measured, with a signal- 
to-noise ratio proportional to N s3/2. The unperturbed vacuum expectation 
value must be subtracted, but it is kept as a free parameter with no 
statistical noise. Therefore this method should be more efficient than the 
previous one by a factor C x N 3, where C appears to be not much smaller 
than 1. (3,4) 

The source at time to can be arbitrarily large. An early attempt (s) con- 
sidered an additive source term proportional to the plaquette. We simply 
set all spatial links at time to to the identity. All spatial loops at to are 
therefore set to 1, and we can study the relaxation of a wide choice of 
observables. All moderate-size loops turn out to probe the O § + glueball 
equally well. A Polyakov loop winds around the periodic lattice in one 
spatial direction. It is topologically different. Correlations C(Ns, t) between 
two parallel Polyakov loops of length (Ns x a) at separation (t x a) probe 
the force between static quarks 

- I n  C(Ns, t) 
lim lim - aa 2 (6) 

t ~ c ~  Ns~oO N s" t 

where a is the string tension and a is the lattice spacing. The vacuum 
expectation value of a Polyakov loop is 0 because of the Z3 symmetry of 
the pure gauge QCD theory. Therefore, in the presence of our source, the 
average value P will relax from 1 to 0 according to 

<P(Ns, t )>~e tNsaa2 for Ns>>t>l (7) 

Spectacular results have been obtained using this method for the string 
tension (3'6'7) and the mass gap. (3"8) Indeed, the results become accurate 
enough to study their dependence on Ns, i.e., finite-size effects. 

The mass gap must vary with Ns according to Ref. 9 

m g ( N s )  =mg(OO) {1 - G mg(OO) aNs 

A strong coupling expansion indicates that G could be quite large, 
O(100-300). (1~ For  the Polyakov loop, a classical string model was 
considered, (7) yielding a fist-order correction 

<P(N s, t)> ~e  t[Nscra2--(2/Ns)] for t>Ns>> 1 (9) 
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with 2 = ~/3. A first attempt was made (7'8) at checking the effective values 
of G and 2. Two simulations were run at /~= 5.7, on a 63x 16 and an 
83 x 16 lattice. The data for the 2 x 2 loop and the Polyakov loop are plot- 
ted in Fig. 1. They yield 

G =  155_45  2=1.09_+.39 (10) 

I recently repeated the same simulations at /~= 5.9 on lattices of sizes 
83 X 20, 103 • 20, and 123 x 20, with 45000, 35000, 25000 sweeps, respec- 
tively. A preliminary analysis of the results indicates (11) 

G~55 1.5 (ll) 

(Oi~, IX > 
I -  i o  

i{]) [ 

16 3 

~ 6316 at ~=5 .7  
�9 83.16 

(2x2 loops) 

PILs , t }  

1 
I o 63.16 
F �9 83-16 

at 8--5.7 

10 .2 

i I ) I | | 

I 2 3 ~ 5 6 8 f  

t6 3 

1~1 T r , , 

O 1 2 3 I. 5 6 ? 8 

Fig. 1. (a) Relaxation of the 2 x 2 loop and (b) Polyakov loop to their unperturbed vacuum 
expectation value as a function of their distance from the source. Two lattices of different 
spatial sizes, 6 and 8, are compared. A ratio of relaxation exponents different from 1 or 6/8 (b) 
provides evidence of finite-size effects; taken from Refs. 7 and 8. 
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A careful error analysis still needs to be performed. But there is a clear 
reduction of finite-size effects for the glueball: as /~ increases, G decreases 
from the strong coupling prediction. The value for 2 is still roughly con- 
sistent with the string picture. The three sets of results are not accurate 
enough to allow a check of the functional forms (8) and (9). Taking these 
first-order formulas for granted, an extrapolation to N s ~  oo yields the 
infinite volume values 

mga ~.685 o a  2 , ' - ~ . 0 6 5  at /~ = 5.9 (12) 

These values are very close to those of Ref. 7 and 8. It would be nice to 
express mg and a 1/2 in units of the cutoff A L. However, the perturbative 
two-loop formula 

/ Q ~ 2  \ 5 1 / 1 2 1  

does not hold until /~ gets much larger than 5.9, as we shall see in Sec- 
tion 2:. A less stringent assumption is that of scaling, which implies 

mg ,q= mg I~= 
0_1/2 = 0.1/2 ~ 2 . 7  14) 

5.9 ~c 

In a world of gluons and infinitely heavy quarks, where the string tension 
would still be al /2~ 420 MeV, the O § + glueball might be expected to lie 
around 1.1 GeV. 

2. Q U A R K - A N T I Q U A R K  C E N T R A L  P O T E N T I A L  

The method to obtain the static q~ potential V(R) via Wilson loops is 
well-known. If the average value of a rectangular loop of sizes R and T is 
called W(R, T), then 

- I n  W(R, T) 
lim - V(R) (15) 

r - ~  T 

So the recipe goes. Start with as much computer time as possible. Choose 
the biggest lattice that your budget and the memory of your machine will 
accommodate. Choose the smallest lattice spacing that will still allow a 
proton to sit "comfortably" in your lattice. Generate by Monte Carlo 
"enough" configurations to protect yourself against thermalization effects 
and critical slowing down of the algorithm (there is no accepted definition 
for the terms "comfortably" and "enough"). Measure elongated loops 
(planar or nonplanar) on your configurations. It is a waste of time to 
measure loops too often, since they take some Monte Carlo steps to 
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decorrelate. A grandmother's rule of thumb says: Spend at most half of 
your time on loop measurements. 

Along these guidelines, my effort in Chippewa has been the following. 
The lattice size is 243• 48 at fl = 6.3. Thermalization was achieved by 3500 
sweeps (starting from a thermalized 243• 6 lattice replicated eight times). 
Then measurements were taken for 10,000 sweeps. Planar loops of size up 
to 24 • 12 in one spatial plane were measured every other sweep (the 
measurement plane rotated every sweep). Simulations of a 164 lattice were 
also performed at fl=6.0 and 6.3, each with 20,000 sweeps for 
measurement. The lower fl value was chosen to check the program against 
earlier work (12'13) and to allow a study of the scaling behavior of the poten- 
tial. The higher fl value was chosen to check for finite-size effects between 
the 164 and 243• 48 lattices. It turns out that all Wilson loops W(R, T) 
measured on the smaller lattice are consistent with those on the larger one, 
except for R/> 15. The effects due to the periodicity of the lattice are not 
visible until the loop very nearly wraps around. This result supports our 
use of loops up to T= 22 for the extraction of the potential on the larger 
lattice. 

The 243 • 48 lattice represents over 21 million degrees of freedom and 
over 48 million words of data [an 18 word SU(3) matrix only has 
8 degrees of freedom. These simulations are therefore something of a 
technological feat, and I should emphasize the following technical aspects 
(a nutshell presentation of the project is given in Ref. 14). The core 
memory used is organized as a circular buffer containing four time-slices of 
data: one time-slice, say i, is updated, using information from its two 
neighbors ( i -  1) and (i+ 1); meanwhile, time-slice ( i - 2 )  is written to disk 
and ( i+2)  read from disk in its place. The update and the loop 
measurement on time-slice i are multitasked, using the four processors of 
Cray-XMP/48 at a sustained 490 MFlops. The speed-up, defined as the 
ratio (wall-clock time on 1 CPU)/(wall-clock time on 4 CPUs), is 3.77. To 
keep pace with the computation, I/O is handled by a 128 Megaword SSD 
(solid-state storage device) rather than by conventional disks. This reduces 
I/O wait time from several days to zero. The update routine uses the 
pseudo-heatbath algorithm/TM The program can update a link in less than 
6/ts, using 2 SU(2) subgroups. In production mode, a slower update with 
three subgroups (or more), is preferred because it decorrelates more 
efficiently; the program then executes the update and the loop measurement 
in less than 12 #s/link. 

I would like to mention a few algorithmic features which give the 
program its high performance. The Wilson loops are measured each sweep 
in parallel 242 planes, of orientation say (x, y). First y links are replaced by 
their meanfield value, as suggested in Ref. 16. This replacement brings 
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down the statistical noise by a large factor, O(10). The mean-field averages 
are not computed by Monte Carlo as in Ref. 16, but by fast numerical 
integration, as developed in Ref. 6. At this stage all x links, except those in 
one band, are rotated to the identity by local gauge transformations in the 
(x, y) plane. Then products of adjacent y links are computed, and assem- 
bled by pairs to yield Wilson loops (whose x sides are all 1). The gauge 
transformations save almost an order of magnitude in the number of 
operations to perform. Of course, loops containing the x links not gauged 
to 1 must be left out (or computed separately), but we do not have time to 
measure all loops in all planes anyway. The update program was developed 
from Ref. 17, although the pseudo-heatbath routine was modified following 
Ref. 18. 

It might be useful here to present a variation on the method of Ref. 18. 
The crux of the pseudo-heatbath method consists in generating a random 
variable between - 1  and + 1 with probability density proportional to 
P(x )  = x /1  - x 2 e kx. The function 

f l y )  = P(x)  dx 
l 

is not easily invertible, so that the distribution P ( x )  is generated in two 
steps. P ( x )  is factored into P l ( x ) "  P2(x), where distribution P~ can be 
generated directly. Then the random sample distributed according to P1 is 
passed through a filter of shape P2, which should reject as small a fraction 
as possible. The decomposition suggested in Refs. 18, 19, and 20, which is 
appropriate for large values of k, is 

P ( x )  dx = , / 1  - x  2 e kx dx (16) 

= 2e k ~ e-kU~u2 du, where x e [ - 1, + 1 ], u ~ [0, x//2] 

P2 PI 

P~ can be generated from Gaussian distributions. But it can also be 
tabulated, noticing that 

e-ku2u2 du=-k 3/2e-V2v2 dv for u = v k  1/2 (17) 

A single table can thus be constructed and used for all values of k: a 
uniform random entry into the table yields the random variable v, then u, 
by rescaling. The restriction v <~ (2k)  1/2 is always satisfied for the k range of 
interest. Tests using a 10,000-element table allowed a shorter update time, 
less than 20/~s/link on one processor (~5#s/l ink on four CPUs). No bias 
could be detected in the measured plaquette after 30,000 sweeps on a 4 4 lat- 
tice. But the table was not implemented in production runs: we did not 
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want  any bias toward  disorder due to the discreteness of v, however  small, 
to affect our  high-statistics results. 

I am deeply indebted to John  Stack for the analysis of the results. He 
also provided the figures accompany ing  this section and the next. Results, 
which are still preliminary, have changed slightly since the Berkeley con- 
ference last May,  (21) because more  statistics have been accumulating. 
Figure 2 shows the quality of the fit In W(R, T) versus T for R up to 8, and 
Fig. 3 shows V(R) versus R, both  obtained from the 243x48  lattice at 
/3 = 6.3. Similar results have been obtained on the 164 lattice at/~ = 6.0. The 

LnW(R,T) 
I 1 I 1 I 1 I 

20.0 

15.0 

10.0 

5.0 
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R/a=6- 

R/a=4 

R/a=2 

I I I I ! I I I 

4 8 12 16 20 24 28 32 T/a 

Fig. 2. Logarithms of the measured Wilson loops W(R, T) versus T, on a 243 x 48 lattice. 
The slope for large T measures the potential V(R). 



QCD from Chippewa Falls 1085 

favored coefficients of the C o u l o m b  (c0 and  l inear  ( a a  2) terms in fits to 
V ( R )  seem to be 

fl = 6.0 a ~ - . 3 3 5  a a  2 ~ .046 ie. 

(R = 2 to 6) 

fl = 6.3 a ~ - . 3 4  o a  2 ~ .0173 ie. 

(R = 3 to 8) 

0-1/2 
92 

Ac 

0-1/2 
~ 7 9  

AL 

The C o u l o m b  terms at  bo th  fl values are  nicely consis tent  with each other ,  
but  ra ther  far from the value - ~ / 1 2 ~  - . 2 6  expected when p rob ing  the 
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Fig. 3. Potential V(R) extracted from the fitting procedure of Fig. 2. The solid line is a 
(Coulomb + linear) fit to the points R = 3 to 8. 
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large R region. (22) The values for the string tension hit a new low in the 
Hubble-constant-like history of that quantity. It is also noteworthy that 
they show a violation of asymptotic scaling between fl = 6.0 and 6.3. This 
violation is consistent with early tests conducted on loop ratios as in 
Ref. 23: the scaling factor between the two values of fl is greater than 1.5, 
whereas asymptotic scaling (13) predicts ~ 1.4. Such evidence would sup- 
port the project of simulating a larger lattice at a slightly larger {/--with the 
next Cray machine. 

3. S U ( 3 )  S P I N - D E P E N D E N T  P O T E N T I A L S  

The work reviewed in this section results from a continuing 
collaboration with John Stack. Other groups have been studying spin- 
dependent effects in the SU(2) (24) and U(1)(25)lattice gauge theories. In all 
cases the approach is based on the 1/m expansion of Eichten and 
Feinberg. (261 I will only try to make plausible the formulas we used. 
Reference 27 gives a pedagogical introduction to this subject. 

We want to investigate spin-spin and spin-orbit potentials. The spin 
of a static quark at position (s t) will orient the chromomagnetic field B at 
that location. Similarly, an elementary displacement dxi of this quark can 
be decomposed into a series of kinks of its world-line, probing the field 
strength tensor Fo~ (i.e., the chromoelectric field Ei) at successive times. 
Perhaps then it will come as no surprise that we must measure elongated 
loops with insertions on the long (timelike) sides. Two magnetic-type inser- 
tions (probing/?) will contribute to spin-spin potentials. An electric and a 
magnetic insertion will contribute to spin-orbit potentials. In the accepted 
terminology, the potentials V~ to V4 can be measured by 

k ---d~-- l i r a  _ 2 ._  r/2 dt l dt2 - - - ' ~  eij~ 

. dr2 l f~/~ ~T/2 t , - t 2  
Rk - ~ =  Tlimo~ -T J_ r/2 ~_ r/2 dtl dt2 - ~ -  eiyk 

1 

l f T/2 ~ T/2 
= l i r a  ~ 3 7"/2 ~- 7"/2 dt, dt2 

(E,(O, t,) Bj(O, t2)) 
( W(R, T) ) 

( W(R, T) ) 

(g/(0, tl)Bj(R, t2)) 
( W(R, T) ) 

(19) 

In (19), W(R,  T) is the usual rectangular R•  T loop. (Ei(0, tl) Bj(/~, t2)) 
means the average value of the loop of size R x T, having an insertion 
probing Ei at location (0, tl) and one probing B: at location (/~, t2). There 
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is a lot of arbi t rar iness  in the insert ion chosen to p r o b e / ~  or B on the lat- 
tice. Various choices, all equivalent  in the cont inuum,  introduce impor t an t  
changes in the normal iza t ion  of V 1 -  1/4 and even distort  the potent ia ls  for 
small or mode ra t e  R. Finally, renormal iza t ion  of these insert ions is not  
under  control ,  so that  the overall  scale of V1 - V4 cannot  be reliably deter- 
m i n e d - - a s  y e t - - f r o m  lattice studies. In our  case we chose to est imate the 
field strength by 

F~p(/~, t ) ~  1 ( M ~ # - M ~ )  
2ia 2 

(2o) 

where M~# is the p roduc t  of four links a round  a plaquet te  in plane (cq fl) 
a t tached by its corner  to the point  (/~, t). 

Fig. 4. 

V3(R) 

0 . 1 5  

0 . 1 0  

0 . 0 5  

# 

o 6 . 0  

o 7 . 0  

, \  '~ 8 . 0  

I f I 

I 2 ,3 4 R/o 

Tensor (spin-spin) potential measured on a 63 • 12 lattice at fl = 6, 7, 8, 9, 10. The 
solid line represents perturbation theory at fl = 10. Taken from Ref. 28. 
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For all the above reasons I think that only the qualitative features of 
the results obtained so far are relevant. A comparison with one-gluon 
exchange (modulo a poorly controlled constant factor) is particularly 
instructive. Figures 4 and 5, taken from Ref. 28, show our measurements of 
V 3 and dV2/dR on a 63 x 12 lattice over a wide range of #. The solid line 
corresponds to one-gluon exchange. The most significant hint of nonpertur- 
bative effects occurs at fl = 6.0 for dVJdR. Even so the statistical errors are 
quite large enough to accommodate perturbation theory. A more accurate 
check is provided by the integrand itself 

f#(q - t2) -= go~(E,(O, t, ) B/(R, t2) ) (21) 

Figure 6 was obtained by measurements on previously stored 243 x 48 con- 
figurations. The agreement with perturbation theory for this spin-orbit 

dV2(R)/dR 

0.15 

0.10 

0 . 0 5  

Fig. 5. 

0.0 

l I I l 

# 
m 

~ 6 . 0  

,\ o 7 . 0  

, \  ~, 8.0 

I I I I 

1 2 3 4 R/o 
Spin-orbit potential measured on a 63x 12 lattice at /3 = 6, 7, 8, 9, 10. The solid line 

represents perturbation theory at # = 10. Taken from Ref. 28. 
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IO00EXB(R=2o, t) 
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Fig. 6. 

-8 .0 -4.0 0 0 4.0 8.0 t,/a 
E x B  versus t at R=2a, measured on a 243x48 lattice at #=6 .3 ,  The solid line 

represents perturbation theory�9 

term is rather striking. A good knowledge of the integrand should also help 
control the error introduced by the finite (small) T bound to the integrals 
in (19). More loop measurements are in progress, using techniques 
explained in Section 2, like mean-field averaging of timelike links and even 
field insertions. Much more work is needed to go beyond Ref. 28 and start 
probing R regions where the choice of insertion becomes irrelevant. 

4. D Y N A M I C A L  F E R M I O N S  

I will now review results from an ongoing collaboration with I. O. 
Stamatescu. There is a well-known problem with simulating the complete 
QCD theory. The anticommuting property of the quark fields translates, 
after proper integration, into an effective action 

Scf~ = SG - Nfln(det W) (22) 
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where Sc is the local Yang-Mills action, N I the number of dynamical 
(light) quark flavors, and W a discretized version of the Dirac operator 
(/9 + m). The presence of the determinant makes (22) nonlocal. For each 
Monte Carlo update of one link variable, the evaluation of the determinant 
will require an amount of computation at least proportional to the volume 
V of the lattice (if not to VZ), so that the algorithm for dynamical fermions 
is slower than the pure gauge algorithm by a factor O(V) at least. Or so it 
seems. 

The two most popular methods to keep the computations tractable are 
the microcanonical (29) and pseudo-fermion (3~ methods. The approach 
taken in Chippewa is a different one, conceived as an improvement over 
the pseudo-fermion method. It is also characterized by the choice of the 
Wilson formulation for the quark degrees of freedom, as opposed to the 
more popular staggered fermion formulation. These two formulations are 
equivalent in the continuum, but lead to different operators W in (22). We 
chose Wilson fermions because they are easier to understand and because 
they may reflect continuum physics at a coarser lattice spacing than 
staggered fermions. The algorithm itself is of the Metropolis type, as in the 
pseudo-fermion method. Each link update requires the comparison of 
e-ES("') s(,)l with a random number. The crucial step is the evaluation of 
the determinant ratio 

det W(u')  (23) 
P -  det W(u) 

In either case this is done by an inner Monte Carlo on bosonic degrees of 
freedom (the "pseudo-fermions"), since 

p 2 det W + W ( u )  Idqo* d~oje -~J~Tw+w~u')~j 
= - - ( e -AS~)~  (24) 

- Zi . )~or W W ( u ) ( p j  det W + W ( u  ') S &o* &oje  * + 

where 

~s~ - ~  q,,* 1- w + W ( u ' ) -  w + W(u)] ~0j 
i , j  

and the observable e 4s~ is evaluated in the old background gauge con- 
figuration. 

The two main differences between our algorithm, described in Ref. 31, 
and the standard pseudo-fermionic one, are the following. The standard 
algorithm linearizes the exponential and takes 

p-2 ~ e-  <~s~>~ (25) 

whereas because of the convexity of the exponential (Janssen's inequality) 

e -<~> ~< (e - t )  (26) 



QCD from Chippewa Falls !091 

approximation (25) leads to a systematic underestimate of the fermionic 
effects. We keep the original observable (24) to avoid this bias. The other 
main ingredient is due to Kuti and Kennedy. (32) The Monte Carlo 
integration in (24) leaves us with a very noisy estimate t~ 2 for/3 2 unless 
the number of pseudo-fermionic Monte Carlo sweeps is of O(104) or more. 
Therefore it is judicious to modify the Metropolis algorithm so that it 
allows for noise provided the estimator is unbiased. This way the number 
of pseudo-fermionic sweeps can be reduced to O(10), as we shall see. Final 
touches in our algorithm include mean-field averaging on some pseudo-fer- 
mions and sparse grouping of the links for a single pseudo-fermionic 
Monte Carlo integration. Reference 31 provides complete details. Our 
emphasis is on keeping the remaining approximations under control by 
monitoring the leading error terms. For  instance, the error due to grouping 
links for pseudo-fermion integration is monitored and always remains in 
the noise ( <  10%) in the following simulations. 

Checks were first conducted by comparing our method with an exact 
calculation on a 24 lattice. Then simulations on a 43x 2 lattice with three 
light flavors revealed a very smooth croosover as a function of/3. (331 There 
was no indication of a phase transition as observed with other methods on 
larger lattices. We want of course to simulate larger lattices too. As a first 
step we ran more tests on a 44 lattice with three light flavors. We evolve in 
a four-dimensional parameter space: the bare coupling constant/3, the hop- 
ping parameter k, related to the bare quark mass mb by 

1 
k - 2(dr + mb) (27) 

the Wilson parameter r, and the number Npf of pseudo-fermionic sweeps 
per link update (actually Npf 1 sweeps to equilibrate the pseudo-fermion 
fields, and Npf 2 sweeps to take measurements). Npf should be an irrelevant 
parameter; r also, but only in the continuum limit. 

To check the dependence on Npf we ran simulations at/3 = 5.0, k = .12, 
r = 1, with the results 

Npf 
(Npfl + Npc2) [] ~1// Re (Polyakov) 

2 + l0 .4074 2.849 .010 
(9) (1) (2) 

5 + 10 .4083 2.849 .008 
(lO) (1) (3) 

10 + 20 .4069 2.847 .006 
(11) (1) (4) 

20 + 20 .4081 2.849 .010 
(9) (1) (3) 

822/43/5-6-24 
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As we changed Npf we changed the average acceptance rate ~ of the 
Kuti-Metropolis scheme to keep the probability for the estimator p(Uf/2) 
of p(-Nf/2) to exceed 1/~ less than 0(3 • 10-3). No trend can be detected for 
this set (fl, k, r). 

The/~ dependence was investigated by the comparing fl = 5.0, 5.4, and 
5.6 at k = .12, r = 1, Npf= (5 + 10) sweeps. 

fl [] YM [] ~ Re (Polyakov) 
5.0 .4005 .408 2.849 .008 

(10) (1) (1) (3) 
5.4 .473 .483 2.839 .032 

(1) (2) (1) (8) 
5.6 .525 .557 2.818 .101 

(1) (1) (2) (34) 

Although we stay below the pure gauge phase transition (fl~5.7),  the 
gradual ordering effect of the fermions is clearly visible on the Polyakov 
loop. 

The r dependence was investigated crudely with the two ideas: 

(i) keep k = . 1 2  constant 

(ii) keep the bare mass m b = 61- constant, as per (27) 

The results are, at fl = 5.0, with (5 + 10) sweeps 

r (i) (ii) 

[] ~ Re (Pol) k [] ~ Re (Pol) 
1. .408 2.849 .008 .12 .408 2.849 .008 

(1) (1) (3) (1) (1) (3) 
.7 .405 2.710 .005 .1685 .415 3.569 .017 

(1) (1) (2) (2) (2) (3) 
.4 .402 2.632 .003 .2830 .448 4.567 .040 

(1) (1) (2) (3) (3) (7) 
.1 .4035 2.600 .000 .8824 - -  - -  

(10) (1) (3) 

It is clear that in (i) a decrease in r increases the bare quark mass, so 
that the fermionic effects drop to zero. And in (ii) the unwanted 15 fer- 
mionic modes go down in mass with r, so that the cumulated ferrnionic 
effects rise dramatically (as would be expected from 48 flavors). This exer- 
cise emphasizes the main difficulty of Wilson fermions, that is, knowing the 
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mass of the dynamical  quarks  during the simulation. Future  work 
including hadron  spectroscopy should solve that  problem. 

N o w  that  we have, I hope, convinced you of the validity and the prac- 
ticality of  our  algorithm, we are pursuing work  on an 83 x 4 lattice to study 
the temperature  behavior  of  the theory and the qO potential. 

5. C O N C L U S I O N  

I hope the work reviewed here will provide more  impetus to the field 
of Q C D  simulations. A concrete example is given by Steve Sharpe at this 
conference(34): he and his col laborators  used the 2 4 3 x 4 8  configurat ions 
generated in Chippewa to study the properties of their 3~/2 blocking trans- 
formation.  I would be even more  pleased if Monte  Carlo physicists in other  
fields would now contemplate  problems with 21 million degrees of  
f r e e d o m - - o r  more. In any case, my goal was to try and impress you with 
all that  can be done on a Cray, and is being done at Cray  Research itself. 
I have been fully rewarded with the question: " H o w  does the size of 
your  basic research group compare  with that  of  Bell Labs?"  
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